Process and Microstructure to Achieve Ultra-high Dielectric Constant in Ceramic-Polymer Composites

نویسندگان

  • Lin Zhang
  • Xiaobing Shan
  • Patrick Bass
  • Yang Tong
  • Terry D. Rolin
  • Curtis W. Hill
  • Jeffrey C. Brewer
  • Dennis S. Tucker
  • Z.-Y. Cheng
چکیده

Influences of process conditions on microstructure and dielectric properties of ceramic-polymer composites are systematically studied using CaCu3Ti4O12 (CCTO) as filler and P(VDF-TrFE) 55/45 mol.% copolymer as the matrix by combining solution-cast and hot-pressing processes. It is found that the dielectric constant of the composites can be significantly enhanced-up to about 10 times - by using proper processing conditions. The dielectric constant of the composites can reach more than 1,000 over a wide temperature range with a low loss (tan δ ~ 10-1). It is concluded that besides the dense structure of composites, the uniform distribution of the CCTO particles in the matrix plays a key role on the dielectric enhancement. Due to the influence of the CCTO on the microstructure of the polymer matrix, the composites exhibit a weaker temperature dependence of the dielectric constant than the polymer matrix. Based on the results, it is also found that the loss of the composites at low temperatures, including room temperature, is determined by the real dielectric relaxation processes including the relaxation process induced by the mixing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of zinc oxide additive on the dielectric properties and microstructure of titanium oxide ceramic

In recent years, research into materials with high dielectric constants, including doped titanium oxide, has increased because of the potential for modern microelectronics applications and high-density energy storage. The aim of this study was to investigate the effects of zinc oxide as an acceptor additive on the dielectric properties and microstructure of titanium oxide ceramics. The amount o...

متن کامل

Dielectric Properties and Morphology of Ferroelectric Ceramic-Polymer Composite Films

Dielectric constant and morphology of BaTiO3-polymer composite films were studied as a function of the filler concentration. The morphology of the films was examined using laser scanning confocal microscopy, which is capable to measure small particle distributions in more details than conventional microscopy. The thin-slice images allowed us to visualize the micronsize particles and the polymer...

متن کامل

Investigation the Effect of Niobium Oxide Additive on the Dielectric Properties of Bismuth Titanate

Bismuth titanate ceramic has been attracted as a lead-free ferroelectric due to its high Curie temperature in high temperature applications as well as high frequency applications. In this study, the effect of niobium oxide as an additive on the microstructure and dielectric properties of bismuth titanate ceramic was investigated. For this purpose, niobium oxide was added to bismuth titanate, sy...

متن کامل

Dielectric Constant and Breakdown Strength of Polymer Composites with High Aspect Ratio Fillers Studied by Finite Element Models

A finite element model was used to study the dielectric constant and breakdown strength of polymer composite filled with high aspect ratio fillers. The impact of composite microstructure and filler aspect ratio on the dielectric properties was investigated. The results were used to explain the experimental data for BaTiO3 fiber filled poly(dimethyl siloxane) published previously. The effect of ...

متن کامل

Dielectric behavior of ceramic–graphene composites around the percolation threshold

Al2O3/graphene and BaTiO3/graphene composites with different concentrations of the conductive second phase, both below and above the percolation threshold, were prepared by the traditional ceramic processing route followed by spark plasma sintering. It is shown that the addition of graphene pins the grain growth of the ceramic matrix grains, leading to a change of the microstructure at low fill...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016